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Abstract

This paper introduces several fundamental con-
cepts in information theory from the perspective
of their origins in engineering. Understanding such
concepts is important in neuroscience for two rea-
sons. Simply applying formulae from information
theory without understanding the assumptions be-
hind their definitions can lead to erroneous results
and conclusions. Furthermore, this century will
see a convergence of information theory and neuro-
science; information theory will expand its founda-
tions to incorporate more comprehensively biolog-
ical processes thereby helping reveal how neuronal
networks achieve their remarkable information pro-
cessing abilities.

1 Introduction

Norbert Wiener, the founder of cybernetics, wrote
that it is the “boundary regions of science which
offer the richest opportunities to the qualified in-
vestigator. They are at the same time the most re-
fractory to the accepted techniques of mass attack
and the division of labor” (Wiener, 1948, p. 2).
He went on to explain that “a proper exploration of
these blank spaces on the map of science could only
be made by a team of scientists, each a specialist
in his own field but each possessing a thoroughly
sound and trained acquaintance with the fields of
his neighbors; all in the habit of working together,
of knowing one another’s intellectual customs, and
of recognizing the significance of a colleague’s new
suggestion before it has taken on a full formal ex-
pression. The mathematician need not have the
skill to conduct a physiological experiment, but he

must have the skill to understand one, to criticize
one, and to suggest one. The physiologist need not
be able to prove a certain mathematical theorem,
but he must be able to grasp its physiological sig-
nificance and to tell the mathematician for what
he should look.”

Indeed, three giants of science, Wiener, von
Neumann and Shannon, realised in the 1940s
the need for understanding the brain in terms
of the fundamental engineering principles applica-
ble to any computational device: energy, entropy
and feedback (Wiener, 1948; von Neumann, 2000;
Shannon and Weaver, 1949). This led to the Macy
conferences (1946–1953) which attracted leading
scientists from across engineering and the physi-
cal and life sciences. The Macy conferences were
one of the earliest organised approaches to trans-
disciplinarity and hailed by some as the most im-
portant event in the history of science after World
War II. They demonstrated the need for, and the
initial difficulties in, establishing a common lan-
guage powerful enough to communicate the intri-
cacies of the relevant fields across the physical and
life sciences and engineering.

While their dream was not realised, this was pri-
marily due to insufficient experimental data. As
time marched on, the barrier to bringing together
the ever more specialised disciplines grew larger.
With tremendous experimental advances having
been made in the past 60 years, it is timely to stand
on the shoulders of these giants and resume their
quest. With this as motivation, the present article
endeavours to whet the appetites of neuroscientists
and information theorists alike for learning more of
each other’s fields.
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1.1 Relevance of Information The-
ory (and Feedback)

The human brain is often described as the
most complex structure in the known uni-
verse (Fischbach, 1992). Certainly, it is the most
efficient signal processing device known. Drawing
only 20 watts of power, the brain significantly out-
performs engineered devices at signal processing
tasks such as source separation, feature extraction,
and speech and image recognition (Sarpeshkar,
1998). This is all the more remarkable because sig-
nals within the brain propagate very slowly com-
pared with those in a computer.
This suggests that the brain uses a paradigm for

signal processing very different from any developed
in engineering. Why then should engineering in
general and information theory in particular have
relevance to understanding the brain? The answer
lies partially in the fact that engineers study fun-
damental laws pertinent to any system, including
biological ones (Berger, 2003; Sarpeshkar, 1998).
Indeed, John von Neumann viewed the brain as
a hybrid computer which performs control, com-
munication and computation, and concluded that
information theory is therefore essential for under-
standing its functionality (von Neumann, 2000).
Wiener too recognised that information theory was
essential for a deeper understanding of feedback
and thus life (Wiener, 1948). Anecdotal evidence
suggests Shannon himself, the father of informa-
tion theory, may have been partially motivated by
how his brain processed “information” when per-
forming a complex task such as juggling balls.
A few words on the concept of feedback are in

order. Feedback refers to achieving a task, such as
keeping a car travelling at a constant speed, by re-
peatedly measuring the current state, such as the
car’s speed, and feeding those measurements back
and using them to make the requisite changes at
the input, such as applying more or less pressure to
the accelerator of the car. Feedback is a fundamen-
tal concept in engineering because it can militate
errors caused by imprecisions and external inter-
ference.
The brain too must use feedback to over-

come imprecisions (Burdet et al., 2001; Wiener,
1948; Marko, 1967; Todorov and Jordan, 2002;
Burdet et al., 2006; Franklin et al., 2008); with-
out feedback, we would fall over whenever we at-
tempted to walk. Within the sensory pathways
there are tremendous numbers of feedback paths
connecting regions of higher-level brain function
to regions of lower-level functionality, giving rise
to top-down processing theories of the visual path-
ways and providing a mechanism for selective at-
tention.
Although they started out in different disciplines

— information theory emerged from communica-

tion theory while feedback was studied in con-
trol theory — recent years have seen some con-
vergence of feedback and information theory. A
fundamental question is what is the slowest rate
at which information must be fed back for the sys-
tem to work. Scientists have started to consider
how fast the brain must be processing informa-
tion if we are able to walk properly and can move
our hand in a straight line even though random
external forces are impeding its motion in experi-
ments (Burdet et al., 2006). This is an example of
such convergence of two important theories.
By virtue of being introductory, the present pa-

per focuses on discussing information theory in
“one-way” (i.e. feed-forward exclusively) biologi-
cal contexts. A comprehensive account of the brain
in engineering terms would necessarily involve the
marriage of information theory and control theory.
Repeating the words of von Neumann, the brain
must be understood in terms of control (feedback),
communication (information theory) and compu-
tation.

1.2 Information Theory and Com-
munication

It must be recognised that the mathematical disci-
pline of “information theory” does not (and should
not) capture all aspects of how the word “informa-
tion” is used in spoken language. Failing to distin-
guish the two can lead to errors caused by flawed
intuition in one direction, or the inappropriate ap-
plication of information theory in the other1.
Information theory was invented in response to

practical problems faced by the designers of com-
munication systems such as telephones and data
modems. The basic problem is to find an efficient
way of transmitting information from one place to
another, whether it be a probe sending information
from the moon back to earth or a mobile telephone
sending and receiving voice and internet packets.
Indeed, consider the problem of one person trying
to send a series of messages to another person on
the other side of a brick wall; for simplicity, assume
this second person is not allowed to speak or send
any other form of message to the first person such
as an acknowledgement or request for clarification
(or “retransmission”). How should the first person
send each message?
One thing is clear; the louder the first person

shouts, the greater the chance that the second per-
son can understand the message over the back-
ground noise (perhaps the neighbours are mowing

1Blindly applying the mathematical equations defining
entropy or channel capacity does not necessarily endow the
resulting quantities with any meaning or validity; infor-
mation theoretic quantities can be understood only with
respect to the assumptions and limitations of information
theory.
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their lawns). Perhaps a little harder to appreciate
but equally true in the digital world, if the first
person were to speak more slowly the second per-
son would have a greater chance of catching every
word. The third parameter that can be adjusted
is the level of redundancy. When we speak with
a young child we tend to elaborate and use more
words to describe a concept in an attempt to in-
crease the chances of correct reception of the over-
all message.

In information theory, these parameters are re-
ferred to formally as the transmission power, the
transmission rate and coding (or redundancy).
The simplest form of coding is to repeat the mes-
sage two or more times. This is known as a repe-
tition code.

Shannon’s pioneering work shattered a long-held
belief that with finite power it was impossible to
be able to transmit a message in such a way as
to guarantee its perfect reception even in the pres-
ence of noise and other interference. Indeed, even
if I shouted at the top of my voice and repeated
myself a hundred times, every so often the inter-
ference (lawn mowers?) will prove too great and
my message will be lost.

The answer lies in coding; repetition codes are
not particularly good codes. Shannon realised that
there exist very clever codes which can ensure that
any two messages are so different from each other
that the receiver can correctly decide which mes-
sage was sent despite the interference. Technically,
perfect reception requires the receiver to listen for-
ever before deciding which message was sent but
the key point is that given any positive but arbi-
trarily small probability of error (such as one mes-
sage being incorrectly received in 1012 messages)
then a code can be constructed which achieves this
level of performance in finite time, and more im-
portantly, the transmission power does not need
to be increased. Increasing transmission power to
achieve a particular error rate is grossly inefficient
compared with choosing a better code. In the ex-
ample of one person trying to convey a message to
the other person, the secret is to share a codebook
beforehand, and a different sequence of sounds, one
for each message that may be sent, is written in
it. “It will rain tomorrow” might be encoded as
(a segment of) Beethoven’s 5th symphony while
“It will be sunny tomorrow” might be encoded as
a hard rock song. These two encoded messages
are “sufficiently different from each other” to have
very little chance of being confused. More impor-
tantly, any small fragment of the two messages are
different. This is how interference is overcome. Be-
cause interference itself has limited power (other-
wise the game would not be fair!) then even if there
are times when the interference is particularly bad,
there will be other times when the interference is

back to normal and in the long run, there is no
confusing Beethoven for hard rock.
For the transmission rate to be acceptable the

codebooks would need to contain more than just
two messages. (With two messages, each one en-
coded by a five-minute song, the transmission rate
would be 1 bit per 5 minutes.) In the same way
that the transmission power does not need to go to
infinity, the transmission rate need not go to zero.
Precisely, Shannon discovered a quantity known as
the channel capacity. If the transmission rate is
less than the channel capacity then communica-
tion with any desired level of accuracy is possible
whereas if the transmission rate exceeds the chan-
nel capacity then it becomes impossible to have
arbitrarily good performance in finite time. As is
to be expected, the channel capacity depends on
the interference. The more destructive the inter-
ference the lower the channel capacity.

1.3 Intra-organism communication

Messages are also passed around within an organ-
ism. Information gathered by an organism’s senses
must be communicated for it to have any effect on
the organism. Within the brain and nervous sys-
tem, information is manipulated in at least three
different ways:

• information acquisition (sensory transduc-
tion);

• communication between spatially separated
regions (information transmission);

• memory formation and recall (information
storage (Varshney et al., 2006)).

In brains, each of these are essential for the emer-
gence of broader functions that might be termed
‘computation’. Communication is perhaps most
fundamental, since information from the senses
needs to be communicated in order for it to have
any affect on an organism, while information stor-
age, whether in computers or brain memories, can
be viewed as communication from the past to the
present or future.
Understanding how the brain stores and trans-

mits information is tantamount to understanding
the brain as a whole because if we could “listen
in” to brain messages it would surely be just a
matter of time before we understood the computa-
tional side, too. That said, the possibility that the
brain does not separate out information transmis-
sion from information processing must be consid-
ered. Whereas computer architectures have mech-
anisms known as buses for moving information be-
tween different processing units, the brain might
take a more efficient distributed approach and si-
multaneously process and communicate in a non-
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separable fashion. It has been stated that “com-
putation in the brain always means that informa-
tion is moved from one place to another” (Buzsáki,
2006, p. 116). A comprehensive understanding
of the brain’s mechanisms for internal communi-
cation will likely form an integral part of more
advanced theories about how ‘computation’ arises
within brain networks.
Regardless of how the brain actually processes

information, at the end of the day the brain is an
input-output system (we react to what we sense)
and therefore subject to the same laws as any
other input-output system. Information theory is
therefore relevant to understanding how the brain
works, and conversely, it is highly likely that ad-
vances in the field of information theory will be
made in synergy with new discoveries of the com-
puting paradigms used by the brain (Cohen, 2004;
Sarpeshkar, 1998; Berger, 2003). Indeed, informa-
tion theory may have to expand to address new
neurobiologically relevant questions if it is to be
powerful enough to explain all aspects of how the
brain manipulates information.
To demonstrate the relevance of even simply

thinking in information theoretic terms, Landauer
estimated that humans learn information at a rate
of about two bits per second (Landauer, 1986)2.
Taking memory loss into account, a person will ac-
cumulate approximately two billion bits of infor-
mation in a lifetime (or approximately 240MB in
computing terms). Since our brain has many more
synapses than two billion, Landauer concludes that
“possibly we should not be looking for models and
mechanisms that produce storage economies but
rather ones in which marvels are produced by prof-
ligate use of capacity.”

1.4 Outline of Paper

According to Cohen (2004), biological science asks
six kinds of questions about domains ranging from
molecules and cells, up to the biosphere:

1. How is it built? (Structures)

2. How does it work? (Mechanisms)

3. What is it for? (Functions)

4. What goes wrong? (Pathologies)

5. How is it fixed? (Repairs)

6. How did it begin? (Origins)

Utilising information theory in neuroscience is ul-
timately useful only if it can address one or more
of these questions.

2To put this in perspective, a digital camera typically
stores a single photo using around 10,000,000 bits. Clearly
then, we extract only a very small amount of information
from what our senses receive.

In this paper we advocate that information the-
ory 1) can be a useful framework for finding an-
swers to some of these questions; but 2) must be
broadened for its theorems to be directly applica-
ble to neuronal networks. Although information
manipulation can happen at very different levels
of organisation, such as storage of information in
genes, or communication at the level of synaptic
transmission between cells, or at that of spiking
patterns of neurons in a network, in this paper we
will be focusing on examples that involve spiked-
based communication between neurons.
In making these points, it is necessary for us

to introduce the most basic and well-known infor-
mation theoretic concepts in Section 2, before dis-
cussing the challenges of applying the theory mean-
ingfully to questions in neuroscience in Section 3.
Then in Section 4 we summarise a specific ex-
ample which illustrates that information theoretic
approaches depend critically on different assump-
tions that could be made about neural systems.
Finally in Section 5 we conclude the paper with
some closing remarks on the material we cover and
briefly summarise recent developments on informa-
tion theoretic approaches in neuroscience that ex-
tend well beyond the classical ideas we present,
thereby with increasing relevance to neurobiologi-
cal systems.

2 The basics and utility of
Shannon Information The-

ory

This section briefly explains key concepts from
Shannon information theory and hints at possible
contributions in neuroscience. By Shannon infor-
mation theory we are referring to a specific sub-
part of the broader field of information theory.
The latter, by definition, encompasses any mathe-
matical theorems about information, and therefore
is not confined to well-known concepts introduced
by Shannon, such as entropy and mutual informa-
tion. As we discuss later, information theory be-
yond Shannon theory may be very important in
neuroscience.
Shannon’s milestone paper (Shannon, 1948) that

founded the field of information theory showed to
the world that introducing the right kind of redun-
dancy was the key to moving information from one
place to another in an efficient and reliable man-
ner. Since information sources such as spoken voice
or PDF (portable document format) documents
generally contain the wrong kind of redundant in-
formation, Shannon proposed a two-step process:
first remove the existing redundancy by compress-
ing the message to be sent, then introduce the right
kind of redundancy for communicating the message
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through the channel at hand. These two impor-
tant concepts are known as “source coding” and
“channel coding” respectively. They motivate sev-
eral fundamental questions including determining
the maximum amount of compression possible of
an information source. Answers to these questions
are given in terms of quantities such as entropy
and mutual information. It is important to re-
alise that these quantities were given special names
because they serve to answer important questions
for a particular class of problems. It would be a
mistake to assume without additional justification
that they are applicable or even meaningful beyond
the bounds of the original questions for which they
serve as the answers to. See e.g. Johnson (2008)
for more discussion.

2.1 Entropy and Source Coding

Living in the digital age, readers will be famil-
iar with compressing files. Zipping up a file to
send to a friend is an example of lossless compres-
sion. Generally (but not always) the compressed
file will be smaller than the original yet no infor-
mation has been lost; the friend can recover the
original file by decompressing the compressed file
(Fig. 1). For compressing music or photos, signifi-
cantly greater compression can be achieved by us-
ing lossy compression algorithms such as MP3 and
JPEG. As the name suggests, some information is
lost (Berger and Gibson, 1998). The original can
be recovered sufficiently well for a satisfactory com-
promise to have been reached; a small amount of
quality is sacrificed for a large saving in storage
space.

X Compression C Decompression X̃

Figure 1: Source Coding.

The remainder of this section discusses lossless
compression only. Consider the problem of com-
pressing a short message of length 8 bits. A bit
is simply a “0” or a “1” so an 8-bit message
is a sequence of eight zeros and ones, such as
“01011101” or “10101010”3. A calculation (or by
writing out all the possibilities if need be, starting
with “00000000”, “00000001” and continuing un-
til “11111111”) shows that there are precisely 256
different 8-bit messages. Compressing a message
would mean using fewer than 8 bits to store the
message. A simple enumeration shows that this is
impossible as stated; there are only 128 7-bit mes-
sages, not enough to represent all possible 8-bit

3Of course, any other alphabet could have been used.
An 8-character message consisting of a string of 8 letters
of the alphabet might look like “abzpuikq” and the same
reasoning would apply.

messages. How then does a computer compress a
file losslessly?

The secret is that there is often redundancy in
the kinds of information that people are interested
in. Equivalently, it is generally the case that not all
messages have an equal chance of occurring. For
argument’s sake, assume that out of the 256 pos-
sible messages, there are 15 messages which occur
most of the time. To exploit this, we may decide to
use 4 bits to represent each of these messages. Pre-
cisely, “0000” would represent the first message,
“0001” the second, up to “1110” for the 15th mes-
sage. To represent any other message, we would
first write down “1111” to mean “not one of the
15” and then we would write down the original
message using 8 bits. This means that 15 of the
messages can be written down using only 4 bits
but the remaining 256 − 15 = 241 messages now
require 4 + 8 = 12 bits for their storage.

The only way to make this meaningful is to
consider repeating this compression exercise many
times. If we had to store a very large number N of
8-bit messages using this scheme, how many bits
will be required? Assume that K out of the N
messages belong to the set of 15 special messages.
These K messages require 4 bits while the remain-
ing N − K messages require 12 bits, or in total,
4K + 12(N −K) bits are required compared with
8N bits had we not compressed the messages. Pro-
videdK is sufficiently large, we will have succeeded
in compressing the data. For example, if K = 750
and N = 1000 then we would require only 6,000
bits rather than the original 8,000 bits.

The conventional way to describe the above sce-
nario is to work with probabilities. We assume
that the messages we are being asked to compress
are being generated at random and there is no cor-
relation between the message we are being asked
to compress now and the messages we have al-
ready compressed. Mathematically, we represent
the original sequence of messages by a sequence
of independent and identically distributed random
variables {x1, x2, · · · }, each having a probability
density p(X). In the above example, each xk would
be an 8-bit message (or equivalently, a number be-
tween 0 and 255 inclusive) and p(X) would be the
probability that a particular message X is cho-
sen. For concreteness, assume that each of the
first fifteen messages have a 5% chance of occur-
rence (meaning there is a 75% chance of a ran-
domly chosen message being one of these 15 and
thereby corresponding with the earlier choice of
K = 750 and N = 1000 ). Then p(00000000) =
p(00000001) = · · · = p(00001110) = 0.05. We
assume that all other messages each have a proba-
bility of 0.25/(256−15) of occurring. The expected
number of bits required to compress a single mes-
sage can then be calculated by summing over i the
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probability that the i th message occurs multiplied
by the number of bits required to represent the i th
message. When most of the probabilities are the
same the calculation simplifies. With the values
given above, the expected length is calculated to
be 15×0.05×4+(256−15)× 0.25

256−15×12 = 6. Thus,
on average, 6N bits would be required to compress
N messages drawn at random if the above scheme
were used.

Is there a better compression scheme, one which
requires fewer than 6 bits per message on average?
In fact, what is the best possible? As elucidated
presently, Shannon was able to answer these ques-
tions. First though, a technicality needs mention-
ing.

Coding each message separately, as was done
above, is inefficient. It is better to concatenate a
series of messages and compress them all at once;
this provides more opportunity for better compres-
sion through the simple fact that there are more
compression schemes to choose from. (It also alle-
viates the wasted space caused by otherwise having
to use an integer number of bits to represent each
message.)

It is therefore quite standard to refer to each
xk as a symbol rather than a message and ask
how many bits per symbol on average must be
used to compress the infinitely long sequence of
independent and identically distributed symbols
{x1, x2, · · · } if each symbol has a probability p(X)
of occurring4.

When X is a random variable and its distribu-
tion is p(X), its entropy is defined as

H(X) = −Ep(X)[log p(x)], (1)

where Ep(X)[·] denotes the expectation with re-
spect to p(X). The practical operation is a sum-
mation whenX is discrete and an integration when
X is continuous. When 2 is the base of logarithm,
i.e. log2, the units of entropy are bits and H(X)
is precisely the number of bits per symbol required
on average to compress an infinitely long sequence
of symbols when each symbol has probability p(X)
of occurring.

It is for this reason that people endeavour to
explain entropy as quantifying the “ambiguity”
or “uncertainty” about the random variable X .
When X has only one possible state (that must
therefore occur with probability 1), there is no am-
biguity about X and the entropy is 0. However if
X takes one of two states with probability p and
1 − p, respectively, (0 ≤ p ≤ 1), entropy is max-
imised when p = 0.5 and H(X) = log2 2. This is
exactly 1 bit and implies that a sequence of equally

4It is traditional in probability theory to use an upper
case letter to represent the random variable while the cor-
responding lower case letter represents realised values.

likely zeros and ones cannot be compressed. Note
also that if p = 0, 0 log2 0 = 0.

Shannon’s source coding theorem states that (in
the limit as the number of symbols goes to infin-
ity) it is possible to compress each symbol to H(X)
bits on average (and impossible to do better). It
does not however say how to design such a source
code. Furthermore, the practical construction of
compression and decompression methods is com-
plicated by considerations of algorithmic efficiency
(which affects battery life in portable equipment
such as mobile telephones) and latency (how long
the receiver must wait from the time a symbol is
sent until that symbol can be received and de-
coded). That said, having a target to aim for is
extremely useful and entropy provides that target
for source compression.

The reader may wish to verify that for the ex-
ample introduced in this section, the corresponding
entropy is 5.72 bits per symbol. This represents the
best any compression scheme can hope to achieve,
and indeed, it is lower than the 6 bits per symbol
scheme presented here.

2.2 Mutual Information, Channel
Capacity and Channel Coding

The following example of a binary symmetric chan-
nel will be used to add concreteness to the ensu-
ing introduction of mutual information and chan-
nel capacity. Let {s1, s2, · · · } denote a binary se-
quence which is to be transmitted to another per-
son or device. It is called the source sequence. The
medium through which a message can be sent from
one person or device to another is called the chan-
nel. Mathematically, a channel takes a sequence
at its input and it generates another sequence at
its output. If the channel were ideal, it would sim-
ply copy its input to its output and communica-
tion would be straightforward. Generally though,
the channel is not ideal. It introduces random er-
rors. If {xi} is the binary input sequence (which is
shorthand notation for {x1, x2, · · · }) then the bi-
nary output sequence {x̃i} of a binary symmetric
channel with error probability p is given by the
rules that 1) for each integer i, the output x̃i at
time i depends only on the corresponding input xi

at the same time i; and 2) the probability that x̃i

differs from xi is p. If p = 0.1 then on average one
in every ten symbols will be corrupted, meaning
either a 0 was sent and a 1 was received, or a 1
was sent and a 0 was received.

What sequence {xi} should be sent over the
channel if the ultimate aim is to send {si} reliably
to the receiver, assuming of course that the receiver
can process the output {x̃i} of the channel before
deciding what it believes the message {si} is? This
is illustrated in Fig. 2 where the operation of gen-
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erating {xi} from {si} is called (channel) encoding
and the operation of generating {s̃i}, the receiver’s
best guess at the original message, is called (chan-
nel) decoding.

S Encoding X

Noisy Channel

X̃ Decoding S̃

Figure 2: Channel Coding.

For simplicity, often the encoding and decod-
ing processes work on blocks of data. Precisely,
the original source sequence S is divided up into
subsequences of length K. Each of these is en-
coded to a longer binary sequence X with length
N . For example, a simple K = 2, N = 3 block
code would be to add a parity bit (i.e. a bit that
is zero when the sequence has an even number of
zeros, and a one when an odd number) after ev-
ery two symbols, so: “00” becomes “000”; “01”
becomes “011”; “10” becomes “101” and “11” be-
comes “110.” Therefore, the sequence “0111” be-
comes “011110” where the 3rd and 6th bits are the
introduced parity bits.
This coded sequence is transmitted through the

channel. At the other end, the receiver reverses
the process, converting each block of N symbols
back into a block of K symbols. In this particular
case, introducing just a single parity bit does not
allow the receiver to have a better guess at what
the original message is, but it does allow the re-
ceiver to detect if a single bit has been changed.
This is called error detection. Error correction,
when the receiver is not only able to detect an er-
ror has occurred but can fix the error and therefore
recover the original message, requires more redun-
dancy to be introduced, that is, choosing N to be
larger than K + 1. (If there are too many errors
then error correction would fail, but the key point
is that the probability that several consecutive bits
are wrong is significantly smaller than if a single bit
were wrong, therefore a small increase in redun-
dancy allows a substantial increase in reliability.)
The two lengths K and N together define the

“rate” of the code, which perhaps is better un-
derstood as measuring the decrease in throughput
caused by the introduction of redundancy by the
encoder. Precisely, in the above example, the rate
of the code is R = K/N , meaning that if the chan-
nel can accept encoded symbols at a rate of 1 bit
per second then the source symbols must have a
rate of only R bits per second.
Reducing the rate enables more redundancy to

be introduced which can be used to increase the
chance of the receiver being able to work out what
message was sent. Shannon’s remarkable observa-

tion was that there is a much better way of in-
creasing the chance of correct reception than by
decreasing the rate towards zero. For a fixed rate
R, the block size K can be increased (thereby in-
creasing N according to the formula N = KR ).
This allows a more sophisticated form of redun-
dancy to be introduced (but at the price of intro-
ducing greater latency; the receiver must receive
N symbols before it can work out what the corre-
sponding K message symbols were).

Shannon proved that there exists a rate C, called
the channel capacity, such that for any rate R
strictly less than C and any desired error rate ǫ > 0
(meaning that the probability that the receiver de-
codes a bit incorrectly is less than ǫ, which might
be chosen to be ǫ = 10−9 or smaller in practice),
there exists a K (possibly quite large) and a block
encoder and decoder pair such that the receiver
can correctly decode each bit of the source mes-
sage with error probability less than ǫ. This is
customarily summarised by saying that error-free
communication is possible at rates below the chan-
nel capacity5.

Shannon was able to give a formula for comput-
ing the channel capacity C. When this formula
(described below) is applied to the above exam-
ple of a binary symmetric channel with probabil-
ity of error p, the channel capacity is found to be
C = 1 + p log2 p+ (1 − p) log2(1 − p), meaning for
example that if the channel can transfer one bit per
second then the source symbols must arrive slower
than C bits per second. If p = 0.1 then C = 0.531
meaning that for every 1,000 source symbols, just
over 1,883 encoded symbols are required for reli-
able communications.

The formula for channel capacity involves a
quantity called mutual information. Intuitively,
the mutual information of the input and the output
of the channel measures how much information the
output provides about the input; the more reliable
the channel the higher the mutual information. It
is therefore reasonable to expect that the larger the
mutual information the greater the channel capac-
ity.

Bearing in mind that “information” is a very
general word and it is therefore not possible to cap-
ture all its nuances in a single mathematical defi-
nition, it is expedient to return to the idea in the
previous section of using asymptotic compressibil-
ity as a measure of information. It turns out that
this is the right definition to use when it comes
to determining the capacity of a channel (which in
itself is an asymptotic measure).

Suppose there are two random variables, X and

5Shannon also proved the converse, that no scheme (even
non-block-based coding schemes) can achieve arbitrarily
small error rates if their rate is greater than or equal to
C.
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Y , and they are somehow related to each other.
For example, X might denote temperature while
Y denotes humidity. Even simpler, X might rep-
resent the outcome of rolling a 6-sided die while
Y is given the value 0 if the die landed on an even
number, or 1 if odd. Knowing Y gives partial infor-
mation about X ; how can we measure how much
information Y tells us about X?

The fact that Y gives partial information about
X is reflected in the fact that if Y is known then X
can be compressed more than if Y were not known.
In the above example, if Y were not known then
it is impossible to compress X because each of the
outcomes is equally likely; we are forced to use one
of six possible symbols (or log2 6 bits) to store each
sample of X ; the entropy of X is H(X) = log2 6.
If Y is known though then only one of three possi-
ble symbols (or log2 3 bits) needs to be stored; the
average conditional entropy is H(X |Y ) = log2 3.
The additional amount of compression possible,
I(X ;Y ) = H(X) −H(X |Y ), is called the mutual
information and measures the amount of informa-
tion Y provides about X . It turns out that mutual
information is symmetric — I(X ;Y ) = I(Y ;X)
— hence there is no need to specify the order of X
and Y . In the above example, if X is known then
Y is known, therefore no additional bits are re-
quired to store Y if X is known: H(Y |X) = 0.
Since H(Y ) = log2 3 it is indeed the case that
I(Y ;X) = H(Y )−H(Y |X) = log2 3 = I(X ;Y )6.

Returning to the channel capacity calculation,
assume that a sequence generated by X is sent
through the channel. The output sequence is it-
self generated by a random variable, call it Y . If
the receiver wants to recover X, it needs at least
an extraH(X |Y ) bits of information (for otherwise
there would be an even more efficient scheme for
compressing X than the best possible, a contra-
diction). Looking at it from another angle though,
this implies that I(X ;Y ) = H(X)−H(X |Y ) bits of
information have somehow been transmitted suc-
cessfully with each use of the channel (since with
an extra H(X |Y ) bits of carefully chosen informa-
tion it is theoretically possible to recover X). For
the case of the binary symmetric channel with error
probability p, a reasonably straightforward calcu-
lation shows that if the input X takes the value 1
with probability q and the value 0 with probability
1− q then the mutual information of the input X
and the output Y is I(X ;Y ) = H(q)−H(p) where
H(θ) = −θ log2 θ − (1− θ) log2(1 − θ) is the num-
ber of bits required to compress a binary sequence

6The reason for this symmetry is that if we were to com-
press X first then compress Y , or if we were to compress
Y first then compress X, we end up either way with hav-
ing compressed optimally the joint sequence generated by
X and Y . Mathematically, H(X, Y ) = H(X) +H(Y |X) =
H(Y ) + H(X|Y ) from which it follows immediately that
I(X;Y ) = I(Y ;X).

taking the value 1 with probability θ and the value
0 with probability 1− θ.
Although we must have the channel input X rep-

resent the source message S in some way, there
is otherwise arbitrary freedom in how to choose
X . Why not choose X to maximise the mutual
information? The largest value H(q) can take is
1 (which occurs when q = 1/2 ). Therefore, the
largest number of bits we can ever expect to trans-
mit reliably through the binary symmetric channel
is 1 − H(p) bits per usage of channel. If p = 0.1
then 1 − H(p) = 0.469. In this case, at most ev-
ery 0.469 bits of the source message must be ex-
panded to 1 bit (since the channel transmits 1 bit
per usage), or in other words, we must have the
rate of the code (see above) satisfy K/N < 0.469.
Remarkably, Shannon proved that this bound is
achievable; whenever the rate is less than the max-
imum of the mutual information, (as close as you
like to) error-free communication is possible7.

It is of interest to note that while here we have
considered an example where X is a discrete ran-
dom variable, the most well known case of a chan-
nel for which the capacity achieving input distribu-
tion is known, is the additive Gaussian noise chan-
nel, with a power constraint on the input. In this
case, the capacity achieving input distribution is in
fact continuous, i.e. a Gaussian distribution. As
we discuss later though, it is far more common for
the capacity achieving input to be discrete.

We now summarise and precisely define the im-
portant information theoretic terms that we have
introduced and discussed above without stating
their formal definitions. Each of these are defined
mathematically as follows. We already introduced
entropy, in Eqn. (3). The average conditional en-
tropy requires a double expectation:

H(Y |X) = −Ep(X)

[
Ep(Y |x)[log p(y|x)]

]
. (2)

As an aid to intuition, consider a single outcome of
the random variable X. The entropy of Y given X
can be calculated from Eqn. (2) by calculating the
expectation with respect to the conditional distri-
bution of Y given X = x . If this is carried out for
all possible outcomes of X , the result is a function
of x. This function can then be averaged with re-
spect to the distribution of x, and by definition, the
result is the average conditional entropy, H(Y |X).
As mentioned above, the mutual information can

be expressed as I(X ;Y ) = H(X) − H(X |Y ) =
H(Y )−H(Y |X) . In what follows below we write
mutual information in a different form based on
another entity called relative entropy or Kullback-

7Note that Shannon proved “it is achievable” in the limit
when N and K goes to infinity, but did not show “how to
achieve it.” In order to be close to the bound, we generally
need a good error correction code and N and K must be
very large.
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Leibler divergence. This is defined as

D(p(X)||q(X)) = Ep(X)

[

log
p(x)

q(x)

]

,

where p(X) and q(X) are two distributions of the
same random variable X . Note that the relative
entropy is positive and is equal to 0 if p(X) is
identical to q(X). Mutual information is defined
as the relative entropy between the joint distribu-
tion of X and Y , and the product of the marginal
distributions of X and Y :

I(X ;Y ) = D(P (X,Y )||P (X)P (Y ))

= Ep(X,Y )

[

log
p(x, y)

p(x)p(y)

]

.
(3)

It is straightforward using p(x, y) = p(y|x)p(x) =
p(x|y)p(y) to obtain the above stated relationships
between mutual information and entropy. The def-
initions as written here hold for both discrete and
continuous distributions of X and Y . In this sec-
tion we have considered only a simple discrete case,
where X and Y are both binary. In general they
can have any number of states, or be continuous,
as is the case below. In full generality, the channel
capacity is defined as

C = sup
P (X)

I(X ;Y ).

3 Challenges of Utilising In-
formation Theory in Neuro-
science

In this section, some of the challenges of integrating
information theory into neuroscience are touched
upon. In particular, we must make assumptions
about the way in which information is represented
in the brain, whereas in engineering this is specified
by the designer. Ultimately it will be necessary to
extend the frontiers of information theory if it is to
encompass in its entirety the information process-
ing techniques of neuronal networks. Such an ex-
pansion would involve in part the greater integra-
tion into information theory of systems and control
theory from engineering and the theory of com-
putation from mathematics. Whereas engineers
aim to keep separate communication circuitry from
computation circuitry so as to simplify the design
and analysis of engineered systems, there is no rea-
son why nature should maintain such a separation.
Evolution tends to find efficient designs and not
necessarily “simple” designs.
It would be counter-productive though to as-

sume that information theory in its current form
could not be applied usefully in computational neu-
roscience. One place it is immediately applicable
is the early sensory pathways where information is

primarily flowing in one direction. Considerably
extra care must be taken when feedback loops are
present. This is especially the case because (in ex-
periments) we have control over the input signal
itself and hence can investigate how a known sig-
nal is communicated from one neuron to another.
The complication though is that it appears the in-
formation is being processed at the same time it is
being communicated.

The brain heavily compresses the information it
receives from its sensory systems. Since the en-
tropy of a signal determines precisely how much
(lossless) compression is possible, it sets fundamen-
tal limits which must be respected by any system,
including biological systems. It is no surprise then
that the estimation of entropy of neural signals
based on experimental data is an active research
area (Borst and Theunissen, 1999; Panzeri et al.,
2007; Vu et al., 2009).

In the brain, neurons communicate with each
other and transfer information. The primary
means of communication are the spikes of each
neuron (Rieke et al., 1997), and it is parsimo-
nious to model their occurrences as depending
randomly on the neuron’s input (Poggio, 1964;
Mainen and Sejnowski, 1995). Thus, neurons com-
municate through a noisy channel, and mutual in-
formation should therefore play an important role
in understanding the nervous system and brain

In order to consider a neuron as a communica-
tion channel, we need to consider what we mean by
“communication” in the specific context of biologi-
cal neurons. There are several important concepts
to consider before we can begin to discuss a specific
example of the application of information theory in
neuroscience.

3.1 Communication Channels and
Modulation

A definition of communication requires the exis-
tence of a physical medium that allows propagation
of energy from one place (an “energy source”) to
another place where that energy has some causal
effect (an “energy sink”)8. We also need to define a
means by which some property of the source can be
altered in a way that results in an observable dif-
ference at the sink after propagation through the
channel. In communications engineering theory,
the energy propagation is called “transmission,”
the source is known as a “transmitter” and the
sink as a “receiver.” These concepts are not suf-
ficient for communication. There also needs to be
an “information source” that is initially observable

8Communication can also take place from the past to
the future, in a fixed location, such as when writing to a
memory device then reading it back again at a later date,
but here we focus on place-to-place communication.
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at the transmitter’s location, but not at the re-
ceiver’s. Communication requires the transmitter
to alter the energy source in a manner that re-
flects the information source, and that can subse-
quently be observed at the receiver after propaga-
tion. This conversion from information source to
energy source is known as “modulation.”
A familiar example where each of these concepts

is readily identified is analog AM or FM radio
transmission, in which recorded sound signals are
communicated, and then reproduced via a speaker.
In this example, the transmission medium can be
a vacuum9 or air, the propagating energy source
is electromagnetic radiation, and the transmitter
modulates the electromagnetic waves in a manner
that reflects the recorded sound signal. AM is am-
plitude modulation, and means that a single fre-
quency sinusoidal wave of E-M (electromagnetic)
radiation has its amplitude changed over time. FM
is frequency modulation, which means the ampli-
tude remains constant, while the carrier frequency
is changed over time.

3.2 Neuronal Spikes and Spike In-
terval Coding

Modulation of the energy source can be thought
of as a code, since it requires a conversion from
one kind of information representation to another.
Indeed, in neuroscience, modulation has a more
general meaning than in communications engineer-
ing, and the conversion from an information source
to variations in a parameter of the energy source
is instead known as a “code.” This is largely in
contrast with communications engineering, where
“code” instead refers to conversion between differ-
ent representations of the information source prior
to transmission at the source, for example “source
coding” and “error correction coding.”
If we wish to consider communication between

neurons, we need to identify the transmission
medium, the form of energy propagation, and a
modulation mechanism. From now on we will use
neuroscience terminology, and refer to modulation
as the “code.” Further, we will refer to the infor-
mation source as the “input,” and the observable
effect at the receiver that results from the input as
the “output.”
Although over longer time scales the plasticity of

neurons can encode/carry information, in shorter
time scales the primary physical medium for com-
munication seems to be the axons of neurons, and
the energy propagation is a pulse-like wave of volt-
age that travels along an axon where it may be
received by other neurons at synaptic junctions.
These pulses are known as action potentials, or

9Vacuum is thought of a transmission medium for elec-
tromagnetic waves.

spikes. Typical cortical neurons transmit spikes to
many other neurons, and receive spikes from many
neurons.
While there are a number of different “communi-

cation channels” in neuronal circuitry — including
segments of the dendritic tree which carry post-
synaptic potentials towards the soma of the cell —
we choose to focus on action potentials because it
is one of the most important communication mech-
anisms between two neurons.
The other concept we must also attempt to iden-

tify is the way in which spikes are coded (modu-
lated) in order to communicate information. Two
possibilities are the height and the width of each
spike. However, these are observed to be close to
identical in most cases, and do not seem to be in-
formation carrying parameters. Instead, it is the
interval between spikes (ISI: inter-spike interval)
that is thought to play an important role in carry-
ing information through a neuronal channel.
Given this, how do ISIs represent information?

In neuroscience there are mainly two different
ideas. One idea is that the ISI itself (see for exam-
ple MacKay and McCulloch (1952)) carries infor-
mation. This is called “temporal coding” (Fig. 3a).
The other is that the number of spikes in a
fixed time interval (see Stein (1967); Lansky et al.
(2004)) carries information. This is called “rate
coding” (Fig. 3b).

︸︷︷︸

t (spike interval)

time

(a) Temporal coding.

time interval (∆msec)

r (number of spikes)
time

(b) Rate coding.

Figure 3: Two forms of spike codes.

So far we have only stated that an input can be
communicated to a receiver output. If this is a
perfectly repeatable process, the rate at which in-
formation can be transmitted depends on the rate
at which the input is updated, and — in line with
Section 2 — also depends on the probability distri-
bution of the input, via its entropy. The transmis-
sion is usually not perfect, and noise is introduced.
This fact leads us to consider the information the-
oretic concepts of mutual information and channel
capacity.
Information theory is not concerned with the

type of modulation. It requires an abstraction that
specifies only what the observable output variable
should be. Since we are not designing a system, we
must make some guesses about aspects of the input
and output for a neuronal communication channel,
and then proceed to calculations of mutual infor-
mation.
Therefore, in Section 4 where we consider the

channel capacity of a neuron model, we necessarily
begin by specifically defining the input and output
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of the channel, and state a model for the channel
noise.

4 Example: Channel Capac-
ity of a Neuron

In this section we present some of our results on the
channel capacity for simple neuron models. One
reason for providing this example, is to illustrate
that there is no simple single formula for channel
capacity, and hence assumptions about the under-
lying model are very important. If these assump-
tions change, the channel capacity also changes.
As we have seen, channel capacity is the max-

imum amount of information that can be trans-
ferred through a noisy channel in a unit time. It
may be much larger than the actual information
transmission rate. This brings us to a natural ques-
tion, that is, why do we need to know the capacity?
Channel capacity is something similar to the

maximum speed indicated in the speedometer of
an automobile. While you will likely never drive
with that speed, the maximum speed is useful be-
cause it tells you the potential of the automobile,
even though you drive with moderate speed. Chan-
nel capacity provides not only the upper limit of
the possible information transmission rate, but also
describes how good the channel is.

Although there is much interest in the quantity
in neurophysiology (Borst and Theunissen, 1999),
theoretical work is rare (MacKay and McCulloch,
1952; Stein, 1967; Johnson, 2010;
Suksompong and Berger, 2010). We have obtained
some interesting results on the capacity from two
different viewpoints. The details will be given be-
low.

4.1 Inputs and Noise of Channel

We consider here a single spiking neuron, and as-
sume that the input to the neuron controls the
expectation of the neuron’s output ISIs. Using
the terminology introduced above, the information
source modulates the ISI. We introduce channel
noise to the picture by assuming that the ISI is a
gamma-distributed random variable, when the in-
put to the neuron remains constant.

Biologically, each cortical neuron receives inputs
from a lot of (pre-synaptic) neurons and each sen-
sory neuron receives physical stimuli. The above
assumption is to model all the inputs to the neuron
as a single parameter θ. Although this assumption
may seem too simple, θ is a time varying function
and is able to represent a a lot of possible func-
tions. In the gamma ISI model, the expectation of
the ISI is given by κθ. Because κ is fixed, θ is the
input to the neuron.

Due to refractoriness, a neuron cannot fire too
fast; therefore the ISI cannot be 0 but must be
larger than a few milliseconds. On the other hand,
if the ISI is too large, it means the neuron is not
working. Thus we assume the input to the neuron
is trying to control the ISI in a fixed range of time.
The average ISI, which depends on θ and κ, is

limited between a0 and b0, that is,

a0 ≤ T = κθ ≤ b0, where 0 < a0 < b0 < ∞.

Thus, θ is bounded in Ω(κ) = {θ | a0/κ ≤ θ ≤
b0/κ}.

4.2 Channel Capacity of a Single
Neuron

For a noisy channel, one important fundamental
problem is to compute the capacity C. Another
problem is to obtain the capacity achieving distri-
bution.
The family of all the possible distributions π(θ)

of inputs P is defined as

P =
{

π
∣
∣ π(θ) ≥ 0 for θ ∈ Ω(κ), otherwise 0

}

.

The mutual information and the capacity depends
on the choice of an output variable. This is
called “coding” in computational neuroscience, but
“modulation” is an appropriate term in informa-
tion theory. Traditionally, two types of modula-
tions have been considered in computational neuro-
science. One is “temporal coding” and the other is
“rate coding” (see Fig. 3). Note that both tempo-
ral and rate coding may be used in the brain. For
example, binaural sound localisation needs phase
information and temporal coding seems natural
while rate coding is appropriate for a motor neuron
because muscles react according to the rate.
We provide some results on the capacity of tem-

poral and rate coding in the following.

Temporal Coding

In temporal coding, the received information is T .
For a π ∈ P , we define the marginal distribution
as

p(t;π, κ) = Eπ(Θ)[p(t|θ;κ)].

The mutual information between T and Θ is de-
fined as

I(Θ;T ) = Eπ(Θ)

[

Ep(T |θ;κ)

[

log
p(t|θ;κ)

p(t;π, κ)

]]

.

The capacity per spike is defined as

CT = sup
π∈P

I(Θ;T ).
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(a) Temporal coding (κ = 3).
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(b) Rate coding (κ = 3).

Figure 4: Capacity achieving distributions for tem-
poral and rate coding. For both coding types, the
optimal input distribution is discrete, with a finite
number of probability mass points.

This optimisation problem cannot be solved an-
alytically. However, it has been proven that
the capacity CT is achieved by a discrete dis-
tribution with a finite number of mass points
(see Ikeda and Manton (2009) for the details).
Since the optimal distribution is a discrete dis-

tribution with a finite number of mass points, the
optimisation problem becomes simple, and we can
compute the capacity and the capacity achieving
distribution numerically. Figure 4a shows the ca-
pacity achieving probability distribution for κ = 3.
The channel capacity CT is 34.68bps (bit ber sec-
ond) (See Ikeda and Manton (2009) for further re-
sults).
Figure 4a shows that the capacity is achieved

when the input is a discrete memoryless distribu-
tion10 with 3 states. This does not imply that the
brain is using discrete states. It is more plausi-
ble that the brain is using continuous states; it is
likely that the actual information transmission rate
in the brain is less than the numerically computed
capacity.

Rate Coding

In rate coding, a time window is set and the num-
ber of spikes in this interval is counted. Let us
denote the interval and the rate as ∆ and R,
respectively, and define the distribution of R as
p(r|θ;κ,∆). The form of the distribution of R is
shown in Ikeda and Manton (2009). For π ∈ P , let
us define the following marginal distribution

p(r;π, κ,∆) = Eπ(Θ)[p(r|θ;κ,∆)].

The mutual information of R and θ is defined as

I(Θ;R) = Eπ(Θ)

[

Ep(R|θ;κ,∆)

[

log
p(r|θ;κ,∆)

p(r;π, κ,∆)

]]

.

Hence, the capacity per channel use or equivalently
per ∆ is defined as

CR = sup
π∈P

I(Θ;R).

10The input is chosen from the three states independently
at each time according to the probability distribution shown
in Fig. 4a.

This optimisation problem cannot be solved
analytically either, but the capacity CR has
been proven to be achievable by a discrete
distribution with a finite number of mass
points (Ikeda and Manton, 2009). Figure 4b shows
the capacity achieving distribution for κ = 3.
The channel capacity CRis 44.95 bits per second
(See Ikeda and Manton (2009) for further results).

4.3 Tuning Curves

The definition of channel capacity requires a max-
imisation over all possible input probability distri-
butions. This definition arose in an engineering
context, where a system designer is assumed to
have control over the inputs to the channel, but not
the channel itself. A different optimisation prob-
lem results if the input to the channel is assumed to
be fixed, but some control over the channel is pos-
sible. This idea is particularly relevant for studies
of biological sensory transduction. In this context,
an external stimulus that cannot be controlled by
the sensing organism must be transduced and en-
coded into action potentials for communication to
the brain. This stimulus can be thought of as an
input to a communication channel.

Given internal noise in the transduction mecha-
nisms, the encoded stimulus received by the brain
is also noisy. Since we introduced mutual infor-
mation in the context of the channel coding the-
orem and digital data, and here our channel in-
put is a sensory stimulus, mutual information may
not seem relevant. However there are other rea-
sons why it can be useful to ensure mutual in-
formation is as large as possible (Berger, 2003;
Johnson and Goodman, 2008) and we therefore are
interested in how the channel might be altered to
maximise mutual information.

But what can be optimised when the stimulus
cannot be controlled? The only other variable that
can alter the mutual information is the conditional
distribution of the channel output given its input.
In the biological context this is the distribution of
a neural response for a given stimulus. Optimising
this distribution means seeking to find the com-
munication channel that it best suited to a fixed
stimulus distribution. Without some constraints
on the form of the conditional distribution, this
would not be a meaningful task. One such con-
straint is to consider a fixed form for the condi-
tional distribution that has some parameters that
can be optimised. Clearly the optimal parameter
set may change for different input distributions.

One reason for considering such an optimisation
might be to assess whether neuronal mechanisms
exist for adaptively altering the conditional distri-
bution to match non-stationary stimuli. Another
equally intriguing reason is the idea that evolu-
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tion might have enabled neural systems to change
parameters over eons with the end result that
those parameters are information theoretically op-
timal. In this scenario, the underlying fixed form
of the probability distribution must be what it is
due to unavoidable constraints, or perhaps gov-
erned by criteria that are not information theo-
retic, e.g. energy considerations (Laughlin et al.,
1998; Sarpeshkar, 1998; Levy and Baxter, 2002;
Laughlin and Sejnowski, 2003; Berger and Levy,
2010).

There are several potentially important sets of
parameters that might be chosen. However, in
other contexts there has been much interest in
determining the optimal form of neuronal tuning
curves, and this is our sole focus here. Experi-
mentally produced tuning curves are plots of the
mean response of a neural system, as a function
of a stimulus parameter (Dayan and Abbott, 2001;
Lansky et al., 2008; McDonnell and Stocks, 2008).
Classic examples of a stimulus parameter include
the angle of a moving bar of light relative to the
receptive field of visual cells, or the sound pres-
sure level of a single frequency (pure tone) sound
played by a speaker. In these examples the av-
erage response as a function of the stimulus de-
fines the tuning curve. The former kind of tun-
ing curve typically has a bell-shape, meaning that
there is a stimulus that produces a maximal re-
sponse, while more than one stimulus can produce
the same lesser response. The latter kind has a
sigmoidal shape, meaning that the mean firing rate
monotonically increases with stimulus, and here we
focus only on this case.

We therefore wish to find the sigmoidal tun-
ing curve that maximises mutual information, for
a given fixed form of a conditional distribution.
While this is generally a difficult optimisation
problem, a simple solution exists for channels
where the capacity achieving input distribution is
discrete, like those considered in this paper. In
fact, the mutual information maximising tuning
curve can be derived for an arbitrary stimulus dis-
tribution, if the capacity achieving input distribu-
tion has been calculated first. The reason for this
is explained in the following.

We consider the same noisy channel as Sec-
tion 4.2, that is the ISIs are governed by a gamma
distribution. We now make a slight generalisation
to the setup of Sections 4.1 and 4.2 and consider
the expectation of the ISIs to be governed by a ran-
dom variable X with a known distribution, such
that Θ is an arbitrary function of X .

We therefore write Θ = f(X). For the gamma
ISI channel, the tuning curve is defined as the con-
ditional expectation of the response variable (ei-
ther T or R) given a specified outcome of X . For
timing coding or rate coding respectively, we write

these expectations as

Ep(T |x;κ)[t] = κf(x)

and

Ep(R|x;κ,∆)[r] =
∆

κf(x)
.

Since Θ = f(X), when the capacity achieving dis-
tribution for Θ is discrete with say M states, the
tuning curve will also consist of M unique values.
Lets call these µ1,..,µM . While this discontinuous
tuning curve achieves the largest possible mutual
information for the channel, it is not unique; other
tuning curves are equally good. Suppose X is a
continuous random variable, and that the tuning
curve maps large intervals of X to the same M
values µ1, . . ., µM . This tuning curve provides the
same M possibilities for the conditional expected
ISI. In order for it to provide the same mutual in-
formation achieved by the original discrete capac-
ity achieving distribution, it is necessary that the
probability with which each µm occurs is the same
in both cases. It has been proven for a special case
of the gamma distribution and rate coding that
this can be achieved by appropriate choice for the
ranges of X that are mapped to each µm. The
resulting optimal discrete tuning curve is then de-
pendent only on the probability density function
of X (Nikitin et al., 2009).

Consequently, the capacity achieving input dis-
tributions derived in Section 4.3 can be converted
to an optimal tuning curve for any choice of the
stimulus distribution. An example of the capacity
achieving tuning curve is shown in Figure 5, for
the special case of κ = 1, which means the chan-
nel is equivalent to a Poisson neuron (Nikitin et al.,
2009). The maximum rate is restricted to 30 spikes
per input sample.

Although such a result holds exactly only for
discrete input distributions, similar derivations of
information theoretically optimal continuous tun-
ing curves have been made, which hold only in
the low noise limit (McDonnell and Stocks, 2008).
See Kostal and Lansky (2010); Kostal (2010) for
related work in the high noise limit.

4.4 Discussion and Interpretation

We have shown our results on neuron channel ca-
pacity from two very different viewpoints. Inter-
estingly, both show that the capacity is achieved
by a discrete distribution. The numerically com-
puted capacities are similar to the range indicated
by some biologically measured results of sensory
neurons (Borst and Theunissen, 1999). The chan-
nel capacity depends on various factors, and we
consider some of them below.
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Figure 5: Channel capacity achieving tuning curve
for a Poisson rate-coding neuron (κ = 1), and an
input x ∈ [0, 1], with a maximum spike-rate of 30
spikes per input sample—see Nikitin et al. (2009)
for further examples.

4.5 Input and Output

We first discuss the input and output of the neuron
channel in this subsection.
Let us start with the input. Although each neu-

ron receives information from many neurons, we
have only considered a single input θ. This may
seem too simple. We assumed that the single input
θ summarises all the inputs to the neuron. More-
over, θ has been assumed to be memoryless and can
have any distribution within the support. Consid-
ering the biological system, this is far from real-
istic. The net input of a neuron may not change
quickly, that is, it has memory. Moreover, a neu-
ron’s input is a collection of many neurons’ noisy
outputs, therefore, it may follow a particular prob-
ability distribution. This implies that we have
computed capacity under less restrictive assump-
tions, and the biologically achievable rate should
be smaller than the capacity obtained in the nu-
merical studies. A better understanding of the
constraints on the input of a neuron would lead
to a more accurate calculation of neuronal channel
capacity.
Next, we discuss the output of a neuron from

two viewpoints, decoding and demodulation.
In order to achieve channel capacity, the re-

ceiver must act as an optimal decoder, meaning
that when X̃ is observed, the receiver must com-
pute the posterior distribution of the input X as
p(x|x̃). When x takes discrete values x1, · · · , xL,
it becomes p(xi|x̃). This is a real number for each
xi. In engineering, this type of decoding is called
“soft decoding.” It seems unlikely that a neuronal
mechanisms for carrying this out could exist, since
a computation of the posterior distribution is nec-
essary.
Another standard decoding technique is “hard

decoding,” that is, only a single value of xi is cho-
sen by the decoder. The optimal hard decoder
chooses the one which maximises the posterior dis-
tribution, that is x̂i = argmaxxi

p(xi|x̃). It is pos-

sible to implement the optimal hard decoder with-
out requiring the online computation of the pos-
terior distribution. Indeed, the output space (the
space where X̃ lies) can be divided into L sub-
spaces in advance, such that the k th subspace
contains all the points X̃ such that xk has the
largest posterior probability given X̃ . Therefore,
the optimal hard decoder can be implemented by a
“quantisation” or “thresholding” algorithm which
simply checks to see which subspace X̃ lies in. Such
an algorithm is often computationally simpler than
computing first the posterior distribution.

When we consider information processing in the
brain, a naive soft decoding seems difficult, at
least for a single neuron. The hard decoding
idea seems more natural. However, the informa-
tion transmission rate of the best hard decoding is
less than the best soft decoding. We should keep
this point in mind. Further discussion is found
in Ikeda and Manton (2009).

4.6 Discreteness

Under the assumptions made, we have shown that
the capacity of a neuron is achieved by a dis-
crete distribution with a finite number of proba-
bility mass points. In information theory, there
are many other known types of channels for which
channel capacity is achieved by a discrete distri-
bution (Huang and Meyn, 2005). For example,
although the capacity of an average power con-
strained additive Gaussian white noise channels is
achieved by continuously valued Gaussian inputs,
simply placing a constraint on the maximum am-
plitude of the channel means capacity is achieved
by a discrete distribution (Smith, 1971).

Our results do not imply that “neuron signals
are only using discrete levels.” On the contrary,
we believe many neurons are using continuous lev-
els. What is implied by our results is that those
neurons cannot achieve the capacity and the ac-
tual rate of information transfer is therefore less
than the capacity. Another implication is for the
measurement of information capacity in neuro-
science (Borst and Theunissen, 1999). Our result
implies that only a small number of discrete ranges
are sufficient for the input distribution to measure
the information capacity of neural coding.

Information theory provides a way of quantifying
whether discrete or continuously distributed sig-
nals are better for any given communication chan-
nel corrupted by random fluctuations. Many neu-
roscience studies quantify information using Shan-
non’s famous information capacity formula relat-
ing mutual information to signal-to-noise ratio.
This formula is correct only for Gaussian additive
noise channels (Cover and Thomas, 2006) — it re-
lies on many assumptions, and if any are false it
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can significantly under- or over-estimate the true
capacity (Berger and Gibson, 1998).

4.7 Further Points

Guessing the channel model is not straightforward.
In particular, feedback is prevalent in many parts
of the brain, which makes it much more diffi-
cult to relate changes in responses to inputs11.
One important example where it is known that
the circuitry is solely feedforward is that of reti-
nal cells (Jacobs et al., 2009). This example has
been used to demonstrate that it is possible to
rule out certain guesses of neural codes. Because
this is based on optimal Bayesian decoding of a
forced binary choice, it would be interesting to ex-
tend (Jacobs et al., 2009) beyond the binary limi-
tation to that where the signals being coded may
have many possibilities
What can we say about more complicated sit-

uations? For example, information processing of
cortical neurons are not strictly feedforward and
the information is shared by many neurons. If we
assume every neuron is performing the same com-
putation, and each neuron encodes and decodes
information in the same way, it seems possible to
extend our results. However, when different neu-
rons encode information differently, the problem
becomes very different. Understanding how the
brain works in information theoretic terms is one
of the grand challenges of this century.

5 Conclusions and Future Di-
rections

Most information theory research to date has
been predicated on an engineering viewpoint.
The main thrust has been to design compres-
sion/decompression methods that compress source
information to the limits given by its entropy
(source coding), or to design error correction
schemes and encoding/decoding methods that al-
low communication close to capacity.
On the other hand, the goal of neuroscience is in-

stead to understand information processing in the
brain.
This does not mean that information theory has

no place in computational neuroscience. Informa-
tion theory provides a way to measure informa-
tion and to understand the limits of compression
(namely, entropy) and communication (namely,
mutual information and channel capacity).
A common “information theoretic” method in

computational neuroscience is to obtain quantita-
tive estimates of the mutual information between
observed sets of data. Since various methods for

11Channels with feedback can have larger capacity.

the (difficult) problem of accurately estimating
mutual information exist, the bigger difficulty is
with using the result to say something about how
the system works. Indeed, the actual goal of com-
putational neuroscience is that of “system identifi-
cation,” as engineers would call it.

If the brain uses spikes to transmit information
(which on faster time-scales appears to be the case)
then understanding the neural code — how the
brain encodes information before sending it across
the “channel” — is tantamount to understanding
how the brain works. Indeed, if we would listen in
to the messages as they are sent from one neuron
to another, it would be relatively straightforward
to determine what each neuron is doing.

Although system identification is not the forte
of traditional information theory (Johnson, 2008),
this is merely for historical reasons. With compu-
tational neuroscience as a main motivator, we pre-
dict that the next decade will see the expansion of
information theory to include more powerful tech-
niques for system identification, and possibly even
an integration of control, computation and infor-
mation theory into a unified framework.

Some recent information theoretic approaches
in neuroscience that go beyond standard Shannon
theory are summarized in the following list.

• While it is traditional in engineering to sepa-
rately code an information source, and then
channel code it for communication across
a channel, it has been shown for some
simple but instructive examples, that non-
separation of these two aspects can achieve
an optimal communication system with a
vastly reduced complexity compared to sep-
aration (Gastpar et al., 2003). This fact is
potentially important for neurobiological sys-
tems, where separation mechanisms seem im-
plausible.

• Many studies have investigated whether the
brain might have
mechanisms for implementing Bayesian algo-
rithms during decision making, prediction and
pattern recognition (Rao and Ballard, 1999;
S.Lee and Mumford, 2003; Knill and Pouget,
2004; George and Hawkins, 2009).

• The possibility of analog cortical error correct-
ing codes has been proposed by Fiete et al.
(2008).

• One limitation of Shannon theory is that
its measures say nothing about directional-
ity or causality. However, directed informa-
tion theory has also been developed (Granger,
1969; Marko, 1973; Rissanen and Wax, 1987;
Massey, 1990; Tatikonda and Mitter, 2009)
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and has recently been applied in neuro-
science (Hesse et al., 2003; Eichler, 2006;
Waddell et al., 2007; Amblard and Michel,
2011; Quinn et al., 2011).

• The relationship between control, informa-
tion theory and thermodynamics has been dis-
cussed by Mitter and Newton (2005); Friston
(2010); Mitter (2010).

Summarising our own modest contribution, we
carefully came up with a simple neuron channel
model based on biological evidence and computed
the channel capacity of this model. Interestingly,
it was proved that the channel capacity is achieved
by a discrete distribution.
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